Buoys: Implicitly Anchored Sketches in Flowing Text

Adam Kumpf
Luxembourg
kumpf@alum.mit.edu

ABSTRACT

This paper provides a generalized approach for dynamically
anchoring sketches within flowing digital text (i.e. line-
wrapped typed characters), called buoys. By constraining cer-
tain parameters of the writing environment, users can freely
move between typing notes and drawing sketches in situ with-
out the need for explicit anchor points to maintain relative
positioning.

Keywords

dynamic text anchors; free space annotation; implicit object
positioning; constraint-based interaction; virtual notepad;
creative tools;

INTRODUCTION

Text editors, email clients, and note-taking applications have
become a daily touchpoint for most computer users; each re-
lies heavily on the line-wrapped, or flowing, text paradigm
for data entry and digital communication.

Over the past decade, advances in touchscreen and stylus in-
puts have brought with them a growing set of applications that
allow users to annotate (or completely replace) their typed
text with freeform drawings [8]. Combining typed text and
hand-drawn sketches is a natural progression — the two forms
of input complement one another to provide a means of com-
munication that can be fast, precise, and expressive.

CURRENT PRACTICES

Unfortunately, the reality of combining flowing digital text
with sketches in a single interface is often tedious. The prob-
lem lies in the relative versus absolute positioning of the two
paradigms.

This tension forces developers to prioritize one format over
the other, or alternatively, break the WYSIWYG interface al-
together to include explicit meta-character anchor points to
bridge the worlds of relative and absolute positioning [7, 5].

These three common approaches to combining text and draw-
ings can be characterized thusly:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission from the
author(s) of this work.

Copyright © 2015

Google Docs []
File Edit View Insert Format Tools Table Comments m

More 7

& e~ P 100% co B

1 2

\

n
Inline approach to drawinas @ in modern
Word proceSSOFS. Edit — Inline | Wrap text | Break text

Figure 1. Example of Inline placement in Google Docs [3].

1. Inline: Force all text and images to flow based on line-
wrapping rules. Freeform drawings are often abstracted as
image objects or blocks for placement and selection (see
Figure 1).

2. Absolute: Allow all images and text to be positioned ab-
solutely anywhere on the page. Text may wrap, but often
within explicitly sized and positioned text boxes.

3. Anchored: Force all text to flow, but allow images to be
positioned anywhere via anchored meta-characters (non-
printing reference points) that flow with the text.

Each approach contains within it a design decision that bal-
ances the priorities of the end user.

If text entry is the dominant mode, the designer is likely to
choose an Inline approach. If free-form drawing is most com-
mon (for example, image editing applications), an Absolute
approach is appropriate. And in the case where users may
frequently switch between text and drawing, an Anchored ap-
proach can be used; making a wide range of layouts possi-
ble, but with the added cognitive overhead of managing meta-
characters and positioning as nearby text is changed.

Additionally, other approaches have been examined (such as
HybridPointing [2]), but these tend to address very specific
use cases where the user is locked into a dedicated mode and
thus not frequently switching between drawing and text entry.

BUOYS: ANCHORS WITH INDIRECTION

We propose a new Buoyed approach to combining text and
drawings that uses dynamic positioning of implicit anchors
and explicit line-wrapping characteristics to remove the bur-
den of anchor management.

Instead of anchoring to an absolute location in the text, buoys
provide a level of indirection to which an anchor can be at-
tached. Let us break down the Buoyed approach into its com-
ponents.

1. “explicit line-wrapping characteristics”: By specifying ex-
actly how lines of text will wrap within a given document
(for example, font family, line height, size, kerning, etc.),
rendering of each line in a given document must remain
consistent across all platforms and can thus be precisely
calculated.

2. “dynamic positioning of implicit anchors”: When a draw-
ing is added, it is given a reference point implicit to its form
(for example, the drawing’s center). That reference point
can then be placed dynamically to float alongside the text
as a function of each line’s deterministic nature (explicit
line-wrapping).

Buoys allow both flowing text and arbitrarily placed drawings
to coexist; spatial relationships are maintained by line without
the need for explicit anchors.

Buoy Algorithm

To implement buoys, a fixed-width line-wrapped text area is
assumed. This ensures that the corresponding buoy location
(which may be a line after it has wrapped) will not change
when rendered on various displays.

For each new drawing d added to the text area:

1. Determine the drawing’s weighted center c. In the simplest
case, this is just the center of the drawing’s bounding box.

2. Calculate the corresponding line segment [that appears
closest to c.

3. Create a new buoy location b, where:

by = ¢z

by ol

That is, b, is an absolute offset, and b, is relative to the line
and will track when preceding lines are shifted up/down.

Because the buoy position b is implicit in what was drawn
and where it was placed, there is no need to burden the user
by displaying buoy locations or providing buoy management
utilities.

Sketchwrite
To demonstrate and explore the real-world possibilities of
buoys, we created an online notepad called Sketchwrite [6].

Sketchwrite is a minimalistic sketching and drawing appli-
cation that lets users freely move between line-wrapped text
entry and drawing (with a set of 6 basic drawing line types).
There’s also basic undo/redo functionality, as well as an
eraser to allow the user to remove specific lines by dragging
over them.

At first glance, users are not likely to realize that any kind
of anchoring is taking place. Without the need to explicitly
show drag handles and anchor points, the user interface feels

X Edit Save

Buoys and Anchors

Buoys provide a level of indirection for
anchoring drawings to flowing, line-wrapped
text

T
Figure 2. Sketchwrite uses buoys for drawing and text alignment.

natural and the added buoy functionality is unnoticeable. This
is particularly true if a user is writing and drawing in a linear
process, from the top to the bottom of the page.

But when the user decides to make a change above where
he or she previously was working, the impact of the buoys
becomes clear: the content below the change is shifted as ex-
pected, even though it was originally placed at a particular
location on the page with possible relationships to the other
text and drawings around it (see Figure 3).

Post-launch feedback about Sketchwrite is ongoing, but pre-
liminary observations suggest that the buoyed approach pro-
vides a consistent and intuitive interaction for the majority of
users (without the need to explicitly show or manage buoys).

R=3s R=35-

Now let's consider another fundamental
element, the/capacitor,

Now let's consider another fundamental
element, thecapacitor,

The symbol for a capacitor looks like this. The symbol for a capacitor looks like this.

. L. "1 1

In our water world, a capacitor behaves like a

pipe with a flexible rubber stopper on the end -
water can only flow up to the point that the
rubber is pushing back as hard as the water

In our water world, a capacitor behaves like a
pipe with a flexible rubber stopper on the end —
water can only flow up to the point that the

pressure. rubber is pushing back as hard as the water
pressure.

1 H 1)

Figure 3. Adding a new line (at cursor shown in red) appropriately shifts
sketches and writing downward without explicit anchor points.

Relationships and Callouts

Flowing text and free-form drawings often remain separated
on the page, but there are also times when a user may want
to circle a particular word or draw lines and arrows between
elements to emphasize their relationships to one another (see
Figure 4).

When text is inserted on lines above or below the drawing, the
circled word will remain properly synchronized and attached
as originally drawn. Similarly, if lines above or below the
drawing are removed, the text and drawing will also remain
aligned.

Here's a graph with some imporiant data.
Notice how text and drawings can interact, like
this callout line.

Figure 4. Interaction between flowing text and free-form drawing. Mod-
ifying lines above or below the overlapping region does not affect their
relative alignment.

Managing Horizontal Misalignment

In the edge case where a user may have circled a word, and
then gone back to add or remove characters preceding the
drawing on the same line, the two may be misaligned; this
ambiguity arises because text may shift horizontally within a
line without altering the overlaid drawing.

While explicit anchors could allow a user to realign a word-
shifted drawing, the cognitive load of managing the sec-
ondary representation would likely outweigh the alternative
of simply erasing and re-drawing a circle around the word

[9].

Furthermore, in the case where a line connects a larger draw-
ing to a particular word, shifting the entire drawing to match
the placement of the word is unlikely to be the desired behav-
ior. Instead, simply re-drawing the connecting line appears to
be the most straightforward solution to this rare occurrence.

NEXT STEPS

Beyond note-taking and word processing, the benefits of
combining text with drawings could have even greater im-
pact in domains where expert knowledge is documented and
transferred. One such domain is software, where large code-
bases are shared among many developers over a long period
of time.

Programmers frequently encounter complex segments of
code that rely on ASCII diagrams (text-based drawings) or
external links to explain how a process or algorithm func-
tions. We believe that a buoyed approach could enable in-
tegrated ways of combing ad-hoc images with any plain
text document; embedding related visual diagrams, graphical
notes, or any other media alongside code and comments.

By allowing code and diagrams to speak the same language,
expert knowledge could be shared more quickly and accu-
rately between users over time, while allowing for the under-
lying, machine-parseable code to remain unchanged. Similar
applications could also be possible in fields such as chemistry
(documenting lab work), medicine (visually depicting symp-
toms), music (abstract chord patterns), literature (diagram-
ming story relationships), and cooking (illustrating prepara-
tion methods) [1, 10, 4].

CONCLUSION

We have shown that adding buoys, an implicit and indirect
form of anchors, to line-wrapped text documents can provide
an intuitive and simple way of managing the relative place-
ment of sketches and annotations. Through the development
and use of Sketchwrite, we have gathered preliminary feed-
back and observations that indicate the effectiveness of buoys
and their ability to be implemented. We have also described
a potential shortcoming when horizontal relationships within
a line are modified. This limitation, as well as adding buoys
to other application domains, are areas we suggest for further
research and development.

ACKNOWLEDGMENTS

Many thanks to Matt Wolfe for his input concerning text ed-
itors and embedded media positioning. This work was made
possible by the generosity of Maura Atwater for her contin-
ued support of applied research in the creative arts.

AUTHORS

Adam Kumpf has two Masters degrees from MIT in
Electrical Engineering & Computer Science (compliant
robotics) and Media Arts & Sciences (tangible user inter-

faces). Adam has worked at LEES, Motorola, CSAIL, MIT o YA |
Media Lab, Teague, The Chaos Collective, and Fiddlewax. (d
http://projects.kumpf.cc))
¥
o |
REFERENCES

1. Bergstrom, T., Karahalios, K., and Hart, J. C. Isochords:
visualizing structure in music. In Proceedings of
Graphics Interface 2007, ACM (2007), 297-304.

2. Forlines, C., Vogel, D., and Balakrishnan, R.
Hybridpointing: Fluid switching between absolute and
relative pointing with a direct input device. In
Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology, UIST ’06,
ACM (New York, NY, USA, 2006), 211-220.

3. Google Inc. Google Docs, 2015.
https://docs.google.com.

4. Horng, J.-S., and Hu, M.-L. The mystery in the kitchen:
Culinary creativity. Creativity Research Journal 20, 2
(2008), 221-230.

5. Javed, A., and Schwenk, J. Systematically breaking
online wysiwyg editors. In Information Security
Applications. Springer, 2014, 122—133.

6. Kumpf, A. Sketchwrite, 2015.
https://sketchwrite.com.

7. Myers, B. A Brief History of Human Computer
Interaction Technology. ACM interactions 5, 2 (March
1998), 44-54.

8. Shneidemnan, B. Touch screens now offer compelling
uses. IEEE Software 9, 3.

9. Sweller, J. Cognitive load theory. The psychology of
learning and motivation: Cognition in education 55
(2011), 37-76.

10. Whitin, P. Sketching Stories, Stretching Minds:
Responding Visually to Literature. ERIC, 1996.

http://projects.kumpf.cc
https://docs.google.com
https://sketchwrite.com

	Introduction
	Current Practices
	Buoys: Anchors With Indirection
	Buoy Algorithm
	Sketchwrite
	Relationships and Callouts
	Managing Horizontal Misalignment

	Next Steps
	Conclusion
	Acknowledgments
	Authors
	REFERENCES

